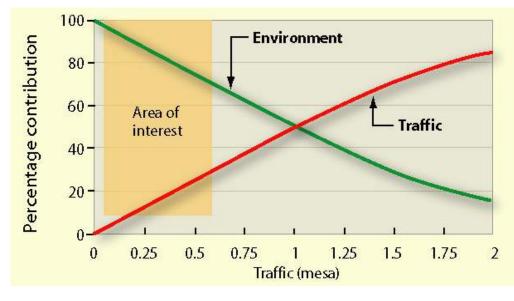
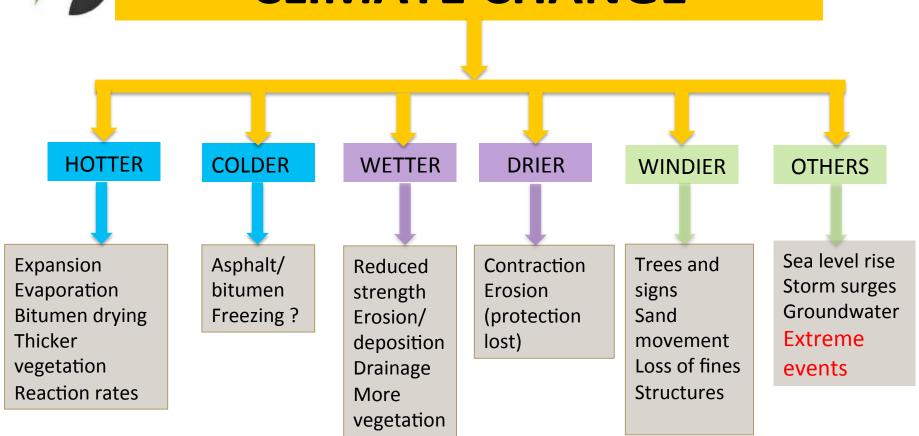


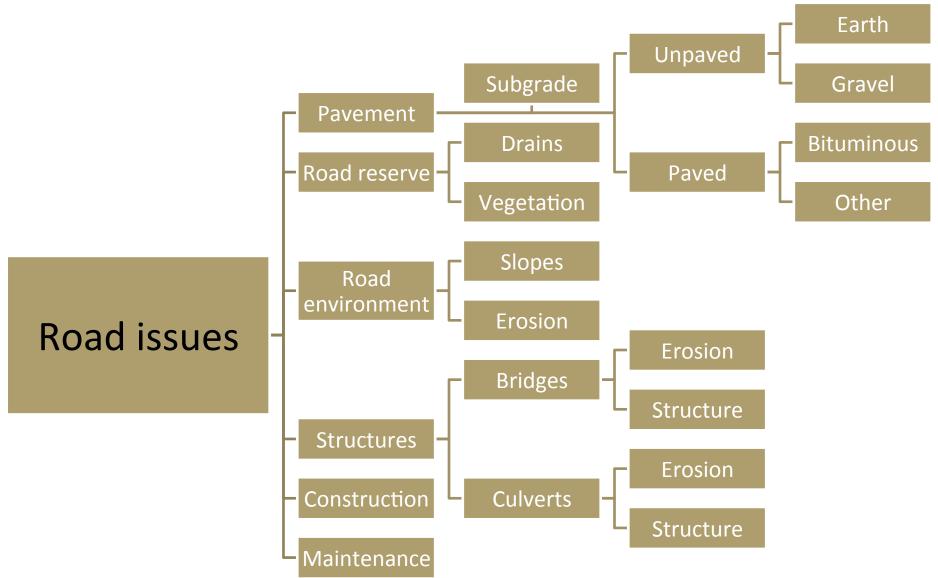
Climate Resilience and Adaptation

Engineering Adaptation Options and Assessment Workshop



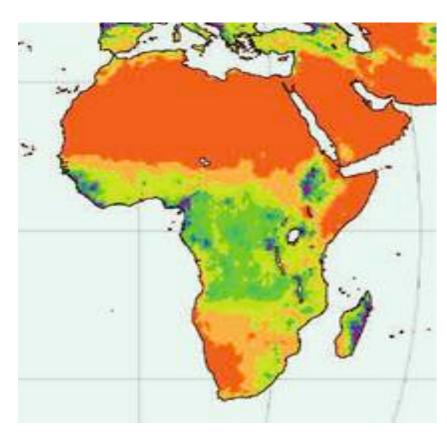
Infrastructure adaptation


- Future climate scenarios ae going to be different from current ones – range of stressors
- Relate changes of each stressor to engineering adaptations for infrastructure components
- Climate plays a dominant role in LVR performance



CLIMATE CHANGE

INTENSITY DURATION



Climatic influences on traditional tools

Climate zonation

Use of climate parameters in zonation

- > Thornthwaite's moisture index.
- Weinert N-value
- ➤ Geiger-Köppen classification
- Water surplus areas
- Return periods
- Etc.
- These are based on temperatures, precipitation, evaporation, etc.
- Will require ongoing modification

Status Quo

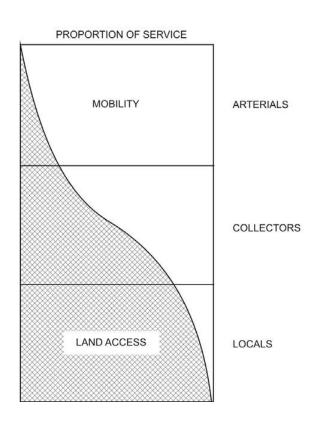
- We have the infrastructure
- We know climate is going to change
- Some of it will be affected
- What are we going to do about it?

Status Quo

- Identify the potential problems
 - Asset Management problem
 - Discuss later
- Prioritise
- Adapt as appropriate

PRIORITISATION

- Most difficult part function of available funding
- What is it based on?
 - Loss of life structures not roads!
 - Inconvenience (Accessibility) social factor!
 - Usually more a function of river crossings or landslides than road condition
 - Accessibility to alternative routes
 - Cost of closure
 - Cost of repair



Priorities?

- Potential loss of life
- Availability of alternative routes
- Cost and consequences of closure
- Environmental/sustainability issues (i.e. pollution, aesthetics, etc.)
- Cost of repair
- Available funds
- Mobility/accessibility requirements.

Mobility versus accessibility

- Different purposes may overlap
- Different requirements

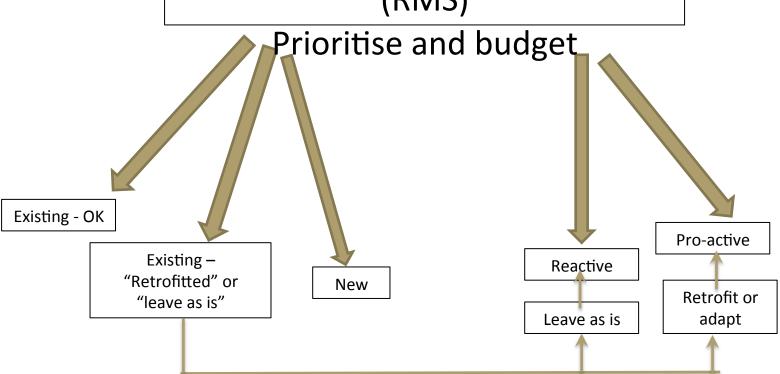
	Required standards for mobility								
Level of Serviceability	Max Roughness (IRI units in m/ km)	Impassability	Duration of impassability						
5	12	> than 4 days/yr	≯ than 1 day						
4	9	Never	None						
3	8	Never	None						
2	7	Never	None						
1	6	Never	None						

Mobility versus accessibility

	Required standards for accessibility								
Level of Serviceability	Comfortable driving speed (km/h)	Impassability	Duration of impassability						
6	N/A	> 20 days/yr	> 5 days						
5	15	< 20 days/yr	Not more than 5 days						
4	20	< 5 days/yr	Not more than 2 days						
3	<i>35</i>	Never	None						
2	50	Never	None						
1	60	Never	None						

Choice of serviceability level

- Include issues such as social, traffic and economic considerations
- Needs to be done at a strategic level.
- Based on the inventory of roads part of the Road Asset Management System


DISCUSSION

	Required standards for accessibility								
Level of Serviceability	Comfortable driving speed (km/h)	Impassability	Duration of impassability						
6	N/A	> 20 days/yr	> 5 days						
5	15	< 20 days/yr	Not more than 5 days						
4	20	< 5 days/yr	Not more than 2 days						
3	<i>35</i>	Never	None						
2	50	Never	None						
1	60	Never	None						

PROCESS

Review of existing assets
Road Management Systems
(RMS)

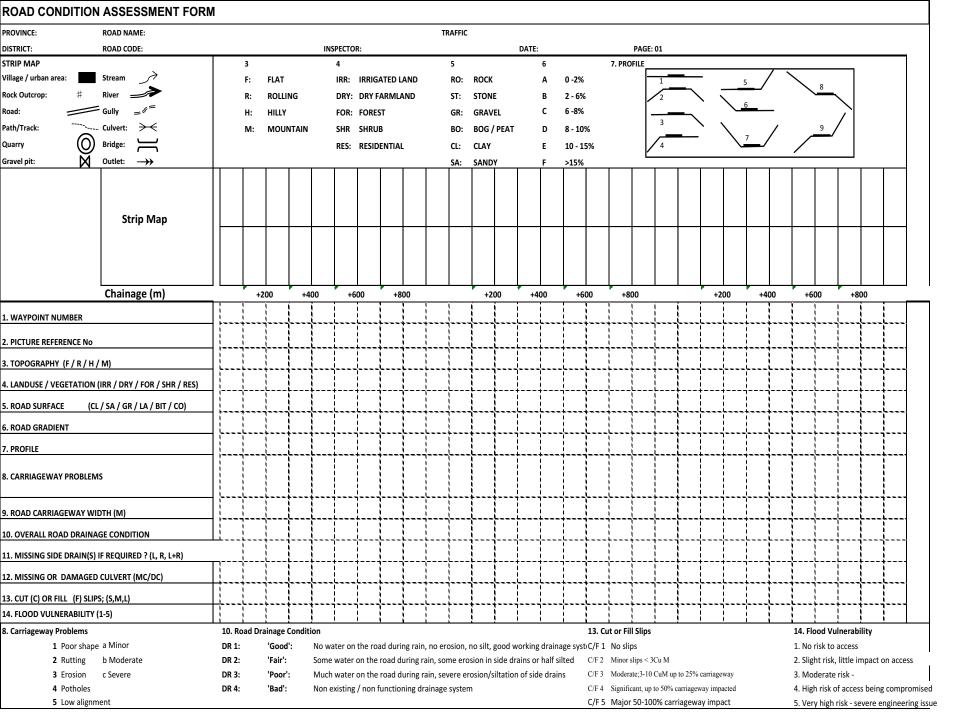
RMS

- Not currently done adequately in most SSA countries
- Climate resilience needs additional information to be collected
- Normally visual assessment of road condition with some measurements (possibly)
- Must also include assessment of potential risk/vulnerability
 - Identify likely problems according to expected climate changes

VISUAL	ASSES	SSMENT	: UI	NP	ΑV	ΈD	R	DΑΙ	os		4	1	C	0.00
ROAD AUTHORITY	:					R	OUTE	CLA	SS:	1	2	3	4	Τ
REGION / SUBURB						TF	RAFFI	: 0		VL	L	М	н	t
ROAD NO / STREET	ΓNAME :					GI	RADIE	NT:		Flat		Med		ı
SEGMENT (FROM)						TE	RRA	N:		Flat		Rolling		L
SEGMENT (TO)						R	OAD '	TYPE	Gr	avel	Ea	irth	Tr	a
						M	DIST		V	/et	Mo	oist	-	٥r
SEGMENT DIMENS	IONS :	LENGTH				m		WIDT	Ή				m	_
	MATER	IAL INFOR	MATIC	ON.	GR	AVE	L PF	OP	RT	IES:		111		ī
MATERIAL QU	ALITY	Very Good		lood		M	odera			Poor			ery Po	
MAXIMUM SIZE			Proble				ove					gravel		
GRADING SIZE				3 mi			- 25 n Aediur		25	- 50 r Fine	ıım	-	50 m	n
ESTIMATED 'P	r			.ow	-		⁄lediur ∕lediur			High		1		
LAYER THICK	NESS	> 125mm	100 -	125	mm	50 -	- 100	mm	25	- 50r	nm	<	25m	n
EXPOSURED:			none						frequent			continuous		
SUBGRADE Q	UALITY		Problem			Good Modera				Poor				
	CHIDEAC	E NICTOEC			NEE	DIM	C AS	CEC				/mud	S	_
	RIAL : FIXED : LOOSE TRANSVERS LONGITUDI	SE NAL		es	SSE: Very stoni Very	Good ness Good	Gc ock o	od utcrop od	Mod corru Mod	erate gations erate	rut Pe	oor ting oor	Very rut/e Very drai	rc
HAZARDS DRAINAGE	: ON THE	= POAD	Proble	em	Very		D.	od ist od	skid	erate resist erate	slippe	oor riness	Very drai Very	in
DIGHTOL	. 0.4 1111		Proble		. u.y	2000	w ind			ting		shape	roac	
DRAINAGE	: SIDE O	F THE ROAD			Very	Good		od		erate	_	oor	Very	
DIVAMAGE			Proble		ADY			t inlets	side		mitre	drains	roac	_
DRAINAGE														

ASSESSMENT

 Climate sensitivity of all components of the road infrastructure needs to be identified during routine road condition assessments


Two primary parameters:

- Damage this can normally be repaired rapidly by local works teams
- Collapse this usually requires significant construction works, often by specialised teams requiring a tendering process and can lead to road closures for an extended period of time.

ASSESSMENT

- What do we need to assess that is different/ not included normally?
 - Erosion potential drains, slopes, fills, etc
 - Subgrade material problems
 - Drainage efficiency in the road reserve
 - Drainage from outside the road reserve
 - Slope and embankment stability
 - Construction quality
 - Maintenance effectiveness
 - Others drift sand, excessive vegetation, etc

							ı			7		1			_						
Road Number:						Date:					Assessors:					We	eather:				
Chainage	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0	.8 0	.9	0.1	. 0	0.2	0.3	0.4	0.5	0.6	0.7	0.8	8 0).9
GPS and photo No																					
Erodibility										T											$\overline{}$
Soil																					+
Road surface				<u> </u>						1		1	1	1			t			1	+
Side drains																				1	1
Embankments																					
Slopes																					
													-								
Drainage (in reserve)																					
Road shape																					
Shoulders																					
Side slopes																					
Side drains																					
Mitre drains																					
									-				_							1	
Drainage (streams)																					
Structure																					
Embankments																					
Erosion																					
		1					1	1	1	1	1	1			-					1	
Slope stability																					
Cut stability																					
Fill stability																					
Construction	1																				$\overline{}$
Compaction																					+
Finish																					+
Erosion protection				1																1	1
														1				·		1	
Maintenance																					
Quantity				<u> </u>						1		1	1	1			i			1	+
Quality																				İ	1
COMMENTS:																					

Africa C	ommunity A	ccess Partner
Road Number:		
Chainage	0.1	0.2
GPS and photo No		
Erodibility		<u>'</u>
Soil		
Road surface		
Side drains		
Embankments		
Slopes		
Drainage (in reserve)		
Road shape		+
Shoulders		
Side slopes		
Side drains		
Mitre drains		
Drainage (streams)		
Structure		
Embankments		
Erosion		

Slope stability		
Cut stability		
Fill stability		
-		-
Construction		
Compaction		
Finish		Ī
Erosion protection		Ī
Maintenance		
Quantity		
Quality		
COMMENTS:		

Choice of serviceability level

- Assessors need to be aware of the possible climate changes
 - Will vary from region to region
 - Must make vulnerability judgements based on the specific stressors and infrastructure

This includes:

- The degree of exposure of the road infrastructure to different climatic hazards;
- The sensitivity of the infrastructure to such changes in climate, and;
- The adaptations necessary to mitigate the potential for damage (i.e. adaptive capacity).

BUDGET

Annual allocation

- Can't plan without precedent
- How much?
- Gaining knowledge but is it consistent?

Emergency

- Usually take from other sources
- Mostly maintenance funds
- Other roads then deteriorate
- Vicious circle

DISCUSSION

- 1. Are there any comments on these properties ?
- 2. Are the major issues covered?

Erodibility		
Soil		
Road surface		
Side drains		
Embankments		
Slopes		
Drainage (in reserve)		
Road shape		
Shoulders		
Side slopes		
Side drains		
Mitre drains		
Drainage (streams)		
Structure		
Embankments		
Erosion		

Slope stability	
Cut stability	
Fill stability	
Construction	
Compaction	
Finish	
Erosion protection	
Maintenance	
Quantity	
Quality	
	<u>-</u>
COMMENTS:	

ADAPTATIONS

INCREASED RAINFALL

Also

- Decreased rainfall
- Increased temperature
- Decreased temperature
- Increased windiness
- Sea-level rise
- Groundwater levels

FACILITY	CONSEQUENCE - POSSIBLE	PROPOSED PREVENTIVE
	PROBLEMS AND DAMAGE	MEASURES SUGGESTED REMEDIES
Un-engineered earth roads	-Flooding (excessive surface water) -Softening of material -Impassability	Upgrade to engineered earth road standard
Engineered earth roads	-Flooding (excessive surface water) -Softening of material -Erosion -Impassability	Improve construction processes Improve drainage Upgrade to gravel road (raise riding surface and improve drainage).
Gravel roads	- Erosion -Loss of shape	Improved material selection Improved construction Improved maintenance
Paved roads	- Loss of strength of layer materials -Damage to thin surfacings -Damage to pavement edges	Use appropriate structural designs Ensure high quality construction Use appropriate surfacings Good maintenance (especially of surface cracking and potholes)
Earthworks	- Slope instability -Saturation and weakening of soils -Erosion -Undercutting -Excessive vegetation growth	Good drainage Good design (higher factors of safety) More slope stabilization measures Increased maintenance Bio-engineering techniques to stabilize slopes.
Subgrade soils	-Expansion and cracking -Collapse -Softening -More movement of salts	Correct identification of problem subgrades Correct remedial actions for problems Avoidance or appropriate treatment of problem subgrades Good design Good drainage
Drainage (water from within road reserve)	-Accumulation of water adjacent to road -Erosion of road surface and drains -Softening of materials	Good drainage design Regular, high quality maintenance
Drainage (water from outside road reserve)	-Erosion of embankments and abutments of culverts and bridges -Silting/sedimentation of culverts and bridges -Overtopping of bridges -Damage to bridges	Modify return periods in design Increase culvert and bridge openings Good design Good maintenance Design to minimise effects of debris (removal or upstream barriers/traps)
Construction	-Excessive moisture in materials	Difficult to mitigate against Construct in dry season Greater use of unslaked lime

RESILIENCE

- Some roads are fine surrounding environment good
 - Raised above NGL
 - Good drainage
 - Sealed shoulders, etc
 - Minimal problems with extreme events
- Others need improvement
 - Costs
 - Phase in over time based on rate of change Proactive
 - Mostly problems with extreme events reactive
- New roads and structures must be designed for the future
 - Resilient
 - Water-proof, temperature proof, flood proof, etc
- Each situation is unique and must be assessed as such !!

Unpaved roads

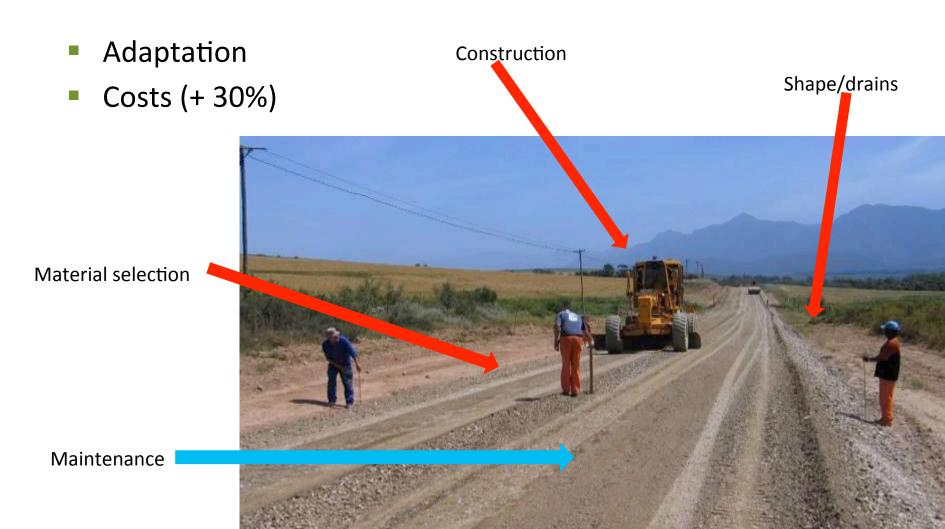
- Probably less problems than paved roads
- Less permanent surface
 - Usually last between 3 and 10 years
 - Maintained regularly (?)
 - Increased gravel loss from erosion
 - Increased damage when inundated

Earth roads

- Most vulnerable unpaved road
- Also dominant type of road in SSA
 - Local material
 - No proper shape
 - Collects water

Earth roads

- Minimum requirement improvement
- Depends on material
- Good gravel road best option


Engineered earth roads

- Depends on material
- If not within specs, we need a full "gravel" road
- Traffic dependent !!

GRAVEL ROADS

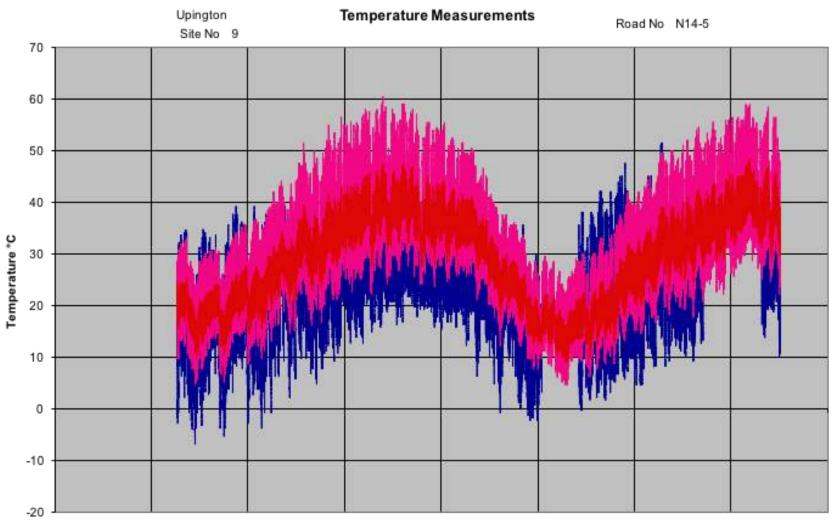
Paved roads

- Different set of problems
 - Long-term > 20 years
 - More difficult (and expensive) to maintain
- Structural design critical
- Function of subgrade
- Steady moisture content over time changes?
- Unique designs for each situation

Paved roads

- CAREFUL DESIGN
- Understand the environment and design for it – moisture, shoulders, drainage, etc
- Maintain the road properly

PAVED ROADS


- Drier and hotter conditions will mostly improve the situation (material strength)
 - More cracking and settlement on clayey subgrades as they shrink
- Wetter conditions will increase problems
 - More expansion as they wet up
 - Dissolution of more salts where present i.e., more pollution
 - Higher pore-water pressures lower shear strengths

PAVED ROADS

- Hotter and colder conditions
 - Affect bitumen mostly softer and harder respectively
 - Quicker oxidation
 - Daily/seasonal moisture movement condensation,
 vapour to water (energy release), etc
 - Hotter conditions also speed up chemical reactions
 - Faster weathering/alteration of aggregates in roads
 - Faster stabilization reactions

 $22/01/2010\ 00:0002/05/2010\ 00:0010/08/2010\ 00:0018/11/2010\ 00:0026/02/2011\ 00:0006/06/2011\ 00:0014/09/2011\ 00:0023/12/2011\ 00:0001/04/2012\ 00:001/0$

Date / Time

Ale	Ton	Detters
- All	- Iop	Bottom

STRUCTURES

- One of the easier problems
- Design is based on return period for a specific storm or flow
- We just need to modify the storm/flow (return period) to handle increased rainfall
- Scour/erosion may require additional work
- Also geometrics

STRUCTURES

- Return periods have been looked at in Ghana (COWI, 2010)
- Indication that 100 year storm will occur every 18 years (2050)

STRUCTURES

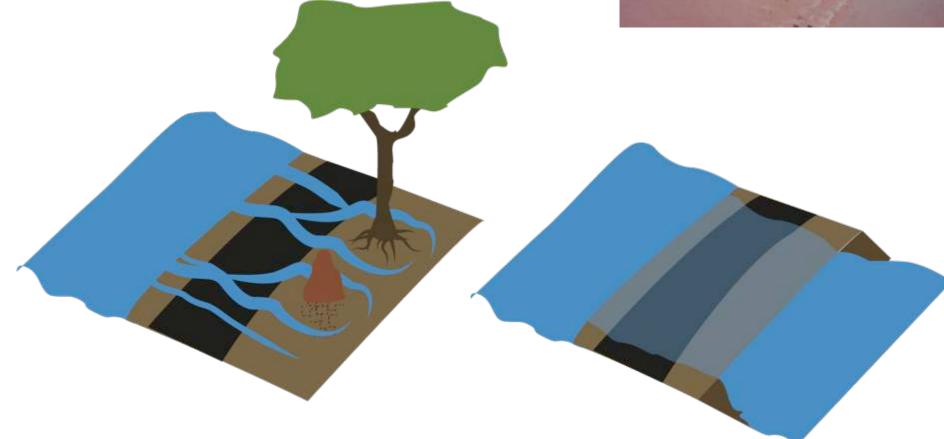
- Take note of potential for reducing bridge capacity
- Overtopping and damage to structure

EARTHWORKS

- Fill and cut failures with wetter conditions (higher pore-water pressures)
- Cracking in fills and cuts with drier conditions
 - More rapid access of water into structures
 - Rapid failures (tension cracking drying cracks?)

Overtopping of embankments during flooding

- Undercutting of the pavement on the the downstream slope - loss of the embankment supporting the pavement structure
- Turbulent flow of the overtopping water causes erosion of shoulders
- Once the shoulders are eroded, the pavement layers are easily eroded



Turbulent flow

Severe problem on natural materials

EROSION & SILTATION

- Increased by loss of vegetation due to drought and fires
- Causes increased siltation/sedimentation
- Requires increased maintenance often mostly manual
- Also better design considerations

OTHER ISSUES

Vegetation

- Hotter and wetter more
 luxuriant more maintenance
- Drier less ground cover –
 more erosion more roots in road structure.
- Susceptibility to fires (drier, windier) and effects of burning (loss of roots/erosion)

Increased temperatures

Main problems identified

Problem	Selected countries affected		
	Mozambique	Ghana	Ethiopia
Shear failure due to excessive subgrade moisture			Χ
Erosion of wearing course and side-drains on grades		X	X
Slope instability			Χ
Erosion of embankments near structures	X	X	X
Collapse of structures	X		
Loss of surfacing on low lying roads during flooding	X		
Pavement failures due to raised moisture contents in sub-layers	X (P)		X (U)
Erosion of high embankments and loss of surfacing during flooding	X		
Undermining of embankment due to flooding	X		
Poor road condition - unsuitable gravel			X
Flooding of the road		Χ	
Impassability due to poor materials and local ponding of water		Х	

DISCUSSION

1. Are there any other major problems not included (excluding bridges)?

Problem

Shear failure due to excessive subgrade moisture

Erosion of wearing course and side-drains on grades

Slope instability

Erosion of embankments near structures

Collapse of structures

Loss of surfacing on low lying roads during flooding

Pavement failures due to raised moisture contents in sub-layers

Erosion of high embankments and loss of surfacing during flooding

Undermining of embankment due to flooding

Poor road condition - unsuitable gravel

Flooding of the road

Impassability due to poor materials and local ponding of water

CONCLUSIONS

- Road adaptations are basically good fundamental engineering
- But we need to identify the potential problems and implement adaptations properly
- Not only design, but also construction and maintenance
- Must identify potential resilience problems during or in conjunction with Asset Management assessments
- Try and avoid future problems before we are too late

Thank you for your attention

www.research4cap.org

Join the ReCAP Group on LinkedIn